Wao Terero is a linguistic isolate spoken in the Amazonian region of Ecuador. The language has a lexical suffix system (Sapir, 1911). Suffixes are associated with collections of polysemous meanings, which do not always have an underspecified core. The suffixes behave like classifiers in some constructions. In discourse, intrinsic polysemous meanings interact with varied extrinsic, discourse roles. Using a proof theoretic framework, I model this system of complex multistratal realization in a manner compatible with Word and Paradigm (WP) morphology (Robins, 1959). Data is from ongoing fieldwork.

Lexical Meanings

Plant terms demonstrate	semi-productive lexical
suffix uses with nouns.	

	chonta	manioc	arazá
type	tree	plant	fruit
plant (we)	tewe	kewe	mingikawe
leaf (yabo)	teweñabo	keweñabo	mingikayabo
fruit (mo/ka)	tewemo		mingika
starch (ne?)		kene	

Nominal usage is not always compositional. The stems below have no independent meaning.

> wadepo W100 onompo future, year hand, fingers canoe, boat

Independent nominal occurrences of *po* may seem unrelated until polysemy in other constructions is considered.

	time	hand	boat
nantapobopa		'my hand hurts'	
ñenepo		big.CLF	big.CLF
manipone	in.this.CLF	in.this.CLF	in.this.CLF

Constructions may exhibit a subset of meanings.

WAO TERERO LEXICAL SUFFIXES: REALIZATION AT THE LEXICAL SEMANTIC-DISCOURSE INTERFACE

Discourse Meanings

Proffered

An "out of the blue" negation blocks a coreference reading in (1).

(1)# $e p \tilde{e} - d e$ $ok\tilde{a}$ - $w\tilde{e}_i$ de ãpa. $ok\tilde{a}$ -w \tilde{e}_i river-loc short-clf exist.NEG short-clf okõ-de ĩpa.

house-loc cop

'There are no short (log) in the river. Short (log) are at the house.

Non-proffered

When a referent is clearly entailed by the context, the descriptive adjectival content is non-proffered.

(2) wĩĩ giita-bõ dipebẽ ino *ĩ-damãĩ* NEG small-CLF left side COP-NEG ĩpa. giita-bõ tobẽ ĩdo ĩpa COP small-CLF right side COP

'The small (fruit) isn't on the left. The small (fruit) is on the right.

Mixed case

In (3b), obatawẽ-po is bad if it is considered to co-refer to the boat seen by (A). A followup using picture aids determines whether what (A) saw can be what (B)'s father owns.

- (3) **Context** A man (A) walks up from the river and tells another man (B) that he saw a boat. (B) asks if it is red.
 - a. A: obatawẽ-po ĩ-dãbãĩ ĩpa red-CLF COP-NEG COP

'It wasn't red (boat)'

- b.B: (# obatawẽ-po) boto bẽpo ki ĩpa father POSS COP red-CLF
- '(# Red (boat))/it is my father's.'

Lexical Proof Morphology (LP)

LP interfaces with Linear Categorial Grammar (Mihaliček and Pollard, 2012).

Form-Paradigm

 $\langle base, \tilde{n}ene, \tilde{N}ENE \rangle$ $\langle \mathsf{po}, \tilde{\mathsf{n}}\mathsf{e}\mathsf{n}\mathsf{e}\mathsf{po}, \tilde{\mathsf{N}}\mathsf{e}\mathsf{N}\mathsf{e}\rangle$

Sign-Paradigm

 $\langle \tilde{n}ene, N, exists B \rangle$ $\langle \tilde{n}ene, N, \iota B \rangle$ $\langle \tilde{n}enepo, N, exists c-and-b \rangle$ s_2 (ñenepo, N, ι (C-AND-B)) $\langle \tilde{n}enepo, N, B(\iota c) \rangle$ $\langle \lambda \phi. \tilde{n} enepo \cdot \phi, \mathsf{N}, \mathsf{exists} \dots \rangle$ $\langle \tilde{n}enepo, N, \iota(H-AND-B) \rangle$

LP is a multi-tiered paradigm theory. Rules, labeled s_n allow for realizational proofs between tiers, represented by lines.

Sign-Paradigm Form-Paradigm phonologically contrastive • lexical entries in Linear Categorial Grammar (LCG) • mcat, similar to Sadler and Spencer (2001) m-features • pheno \approx HPSG рном • tecto \approx HPSG syn • mform, a string

mcat	mform	lexeme	pheno	tecto	semantics
base	ñene	ÑENE	$\lambda \phi.$ ñene · ϕ	N N	$\lambda x.big \ x$

Mapping

Inflectional realization is a mapping between paradigms. Natural deduction-style rules specify valid mappings.

 $(mc, mf, lx) mc \le \kappa meaning(mc, lx, s)$ (1) $\langle \lambda t (\lambda \phi. t \cdot \phi) mf, N \multimap N, \lambda P_{(e \to t) \to (e \to t)} (\lambda x. Px) s \rangle$

- A form-entry must be provided.
- Application is constrained by an **order on mcats**.
- meaning, a relation between mcats, lexemes and semantic terms s.
- Rule application will fail if s does not have the type $(e \rightarrow$ $p) \rightarrow (e \rightarrow p).$

 $\langle base, \tilde{n}ene, \tilde{N}ENE \rangle$ base $\leq \kappa$ meaning(base, $\tilde{N}ENE, big)$ $\langle \lambda \phi. \tilde{n}ene \cdot \phi, \mathsf{N} \multimap \mathsf{N}, \lambda x. big x \rangle$

Representing Meaning

LP interfaces with the dynamic semantic theory DyCG (Martin and Pollard, 2012)

Representations for NENEPO, 'big (canoe'

non-proffered proffered mixed EXISTS CANOE-AND-BIG ι (CANOE-AND-BIG) BIG(ι (CANOE))

 $\vdash \text{BIG} = (\text{dyn}_1 \text{ big}) = \lambda nkc.(\text{big } [n]) \text{ and } (k(c + \text{big } [n]))$

The dyn_i function lifts static semantic terms into dy**namic semantics**. The *i* is for the number of entity arguments required. n is a discourse referent. c is the context and k is something composed with BIG.

 \vdash EXISTS B = λkc .exists $\lambda x.(b x)$ and (k(append(c, x) + b x))

EXISTS adds a discourse referent to the context.

 $\vdash \iota(BIG) = def(c, BIG)$

ι retrieves an antecedent.

The *meaning* Relation

The *meaning* relation is inductively defined, with numerous clauses. These clauses may be represented as natural deduction rules.

> $mc \leq class Rel(lx,ls,mc,ms,R)$ (II)meaning(mcat,lexeme,R(ls,ms))

Rel is similar to the treatment of compounds in construction morphology (Booij, 2010). It is defined in cases where some triple of a lexeme meaning, a category meaning and a relation between them holds.

$\vdash \text{Rel}(\tilde{\mathbf{n}}_{\text{ENE}}, \text{big}, \mathbf{p})$	b, canoe-ish, $\lambda xy.x$	and y (IIIa)
--	------------------------------	----------------

- \vdash Rel($\tilde{\mathbf{N}}$ ENE, big, po, hand-ish, $\lambda xy.x$ and y) (IIIb)
- \vdash Rel(\tilde{n} ENE, big, po, canoe-ish, λxy . $\langle x, y \rangle$) (IIIc)

Given these meanings, we can define s_1 (**proffered**).

$mc \leq class meaning(mc,lx,s)$	$(\mathbf{I}\mathbf{V})$
$\langle \mathrm{mf}, \mathrm{N}, \lambda P_{e \to t}.(\mathrm{exists} \mathrm{dyn}_1 P) s \rangle$	(IV)

Rule s_3 (**mixed**) is slightly more complex.

 $mc \leq class meaning(mc,lx,s)$ **(T7)**

$$\left\langle \mathrm{mf}, \mathrm{N}, \lambda P_{(e \to t) \times (e \to t)} (\mathrm{mix} \ P) s \right\rangle$$
 (V)

$$\vdash \min =_{\operatorname{def}} \lambda x. (\operatorname{dyn}_1 \pi_1 x) \iota (\operatorname{dyn}_1 \pi_2 x)$$
(VI)